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Abstract In the paper, we consider a class of nonsmooth multiobjective programming
problems in which involved functions are locally Lipschitz. A new concept of invexity for
locally Lipschitz vector-valued functions is introduced, called V -r -invexity. The generalized
Karush–Kuhn–Tuker necessary and sufficient optimality conditions are established and dual-
ity theorems are derived for nonsmooth multiobjective programming problems involving
V -r -invex functions (with respect to the same function η).
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1 Introduction

In the recent years, considerable amount of research has been done in the field of multiobjec-
tive programming (see, for example, [1,2,5,7,10,13,19,22]). But in most of the studies, an
assumption of convexity on the problems was made (see, for example, [11,23,24]). Recently,
several new concepts concerning a generalized convex function have been proposed. Among
these, the concept of an invex function has received more attention.

The class of invex functions was introduced by Hanson [8] as a broad generalization of
convexity for differentiable real-valued functions defined on Rn . Hanson proved that both
Karush–Kuhn–Tucker sufficiency results and Wolfe weak duality, in differentiable mathe-
matical programming problems, hold with the invexity assumption.

Recently, a few authors extended the relevant results in the theory of multiobjective opti-
mization with invexity notion.
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Jeyakumar and Mond [10] generalized Hanson’s definition to the vectorial case. They
defined V -invexity of differentiable vector-valued functions which preserve the sufficient
optimality conditions and duality results as in the scalar case and avoid the major diffi-
culty of verifying that the inequality holds for the same function η for invex functions in
multiobjective programming problems.

Later, Antczak [2] introduced the concept of V -r -invexity for differentiable multiobjec-
tive programming problems, which is a generalization of the idea of V -invex functions [10]
and the concept of differentiable r -invex functions [3].

For the most part, the study of invexity has been in the context of differentiable functions.
However, in the recent years, the concept invexity, previously introduced for differentia-
ble functions, was generalized to the case of nonsmooth functions. Jeyakumar [9] defined
generalized invexity for nonsmooth scalar-valued functions, established an equivalence of
saddle points and optima, and studied duality results for nonsmooth problems.

Reiland [21] extended invexity to the nondifferentiable setting by defining invexity for
Lipschitz real-valued functions. His principal analytic tool was the generalized gradient of
Clarke [4]. Along the same lines, Kaul et al. [12] established optimality and duality results in
nondifferentiable mathematical programming problems involving Lipschitz functions under
generalized invexity assumption.

In [6], Egudo and Hanson extended the concept of V -r -invexity of Jeyakumar and Mond
[10] to the nonsmooth case. Mishra and Mukherjee [17] extended the concepts of V -pseud-
oinvexity and V -quasi-invexity to the nonsmooth case. Later, Mishra and Mukherjee [16]
extended the work of Jeyakumar and Mond [10] to the class of composite nonsmooth func-
tions with a more general efficient solution, namely conditional proper efficiency.

In [1], in terms of the Clarke subdifferential, Antczak defined a new class of Lipschitz
functions and he called it (Lipschitz) r -invex functions. This class of Lipschitz functions con-
tains the class of Lipschitz invex functions defined by Reiland and generalizes the definition
of differentiable r -invex functions [3] to the case of (nondifferentiable) Lipschitz functions.

In this paper, we consider a class of nonsmooth multiobjective programming problems
in which functions are locally Lipschitz. The purpose of this paper is to use the introduced
notion of V -r -invex functions (with respect to the same function η) to establish sufficient
optimality conditions and duality results for such a class of nonsmooth multiobjective pro-
gramming problems. The concept of efficiency is used to state optimality theorems and some
duality results.

2 Locally Lipschitz V -r-invex functions

Let Rn be the n-dimensional Euclidean space. For any x = (x1, x2, . . . , xn), y = (y1, y2,

. . . , yn), we define:

(i) x = y if and only if xi = yi for all i = 1, 2, . . . , n;
(ii) x < y if and only if xi < yi for all i = 1, 2, . . . , n;

(iii) x � y if and only if xi � yi for all i = 1, 2, . . . , n;
(iv) x ≤ y if and only if x � y and x �= y.

Throughout the paper, we will use the same notation for row and column vectors when the
interpretation is obvious.

In this section, we provide some definitions and some results that we shall use in the
sequel.
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Definition 1 Let X be an open subset of Rn . The function f : X → R is said to be locally
Lipschitz (of rank K ) at x ∈ X if there exist a positive constant K and a neighborhood N of
x such that, for any y, z ∈ N ,

| f (y) − f (z)| � K‖y − z‖.
If the inequality above is satisfied for any x ∈ X, then f is said to be locally Lipschitz (of
rank K ) on X .

Definition 2 [4] If f : X → R is locally Lipschitz at x ∈ X , the generalized derivative (in
the sense of Clarke) f at x ∈ X in the direction v ∈ Rn , denoted f 0(x; v), is given by

f 0(x; v) = lim sup
y→x
λ↓0

f (y + λv) − f (y)

λ
.

Definition 3 [4] The generalized gradient of f at x ∈ X , denoted ∂ f (x), is defined as
follows:

∂ f (x) = {ξ ∈ Rn : f 0(x; v) � 〈ξ ; v〉 for all v ∈ Rn}. (1)

On the basis of the definition of invexity for Lipschitz functions [21] and the definition of
differentiable r -invex functions, Antczak [1] introduced a class of (scalar) Lipschitz r -invex
functions.

Later, Antczak [2] generalized a concept of (scalar) differentiable r -invex functions to
the vectorial case and he defined a class of V -r -invex functions. In this paper, the notion of
r -invexity is further generalized and we introduce now a class of locally Lipschitz V -r -invex
functions.

Definition 4 Let f : X → Rk be a locally Lipschitz function on a nonempty set X ⊂ Rn ,
and let r be an arbitrary real number. If there exist functions η : X × X → Rn and αi :
X × X → R\{0} such that for any i = 1, . . . , k, and for all x ∈ X , the inequality

1

r
er fi (x) �

1

r
er fi (u)[1 + rαi (x, u)〈ξi ; η(x, u)〉] (> with x �= u) for r �= 0

fi (x) − fi (u) � αi (x, u)〈ξi ; η(x, u)〉 (> with x �= u) for r = 0 (2)

holds for any ξi ∈ ∂ fi (u), then f is said to be a (locally Lipschitz) V -r -invex (strictly
V -r -invex) with respect to η at u on X .

If the relation (2) is satisfied at any point u ∈ X, then f is said to be V -r -invex (strictly
V -r -invex) with respect to η on X .

The class of vector-valued locally Lipschitz V -r -invex functions is defined by a natural
way in the paper. As it follows from Definition 4, the vector-valued function f : X → Rk

is a locally Lipschitz V -r -invex function if each component fi , i = 1, . . . , k, is a locally
Lipschitz αi -r -invex function, that is, the inequalities (2) hold.

Remark 5 In the case when r = 0, we obtain that f is (locally Lipschitz) V -invex with
respect to η on X .

Remark 6 In order to define an analogous class of (strictly) locally Lipschitz V -r -incave
functions with respect to η, the direction of the inequalities in (2) should be changed to the
opposite one.

Now, we give a useful lemma whose a simple proof is omitted in the paper.
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Lemma 7 If f is a V -r-invex (V -r-incave) function with respect to η on X, and if k is any
positive real number, then the function k f is V - r

k -invex (V - r
k -incave) with respect to the

same function η on, X.

3 Nonsmooth multiobjective programming

In this paper, we consider the following nonsmooth multiobjective programming problem

f (x) = ( f1(x), . . . , fk(x)) → min

g j (x) � 0, j = 1, . . . , m, (VP)

where fi : X → R, i ∈ I = {1, . . . , k} , g j : X → R, i ∈ J = {1, . . . , m}, are locally
Lipschitz functions on a nonempty set X ⊂ Rn .

Let

D = {x ∈ X : g j (x) � 0, j ∈ J }
and

J (x) := { j ∈ J : g j (x) = 0} for some x ∈ D,

denote the set of all feasible solutions for (VP) and the active constraint index set at x ∈ D,
respectively.

We also define the sets

I (x) : = {i ∈ I : λi �= 0} for some x ∈ D,

f I (x) : = { fi : i ∈ I (x)} ,

gJ (x) : = {
g j : j ∈ J (x)

}
.

For such optimization problems minimization means obtaining of efficient solutions (Pareto
optimal solutions) in the following sense [20].

Definition 8 A point x ∈ D is said to be an efficient (Pareto optimal) point for (VP) if and
only if there does not exist x ∈ D such that

f (x) ≤ f (x).

Definition 9 A point x ∈ D is said to be a weak efficient (weak Pareto optimal) point for
(VP) if and only if there does not exist x ∈ D such that

f (x) < f (x).

The necessary optimality conditions of Fritz John and Karush–Kuhn–Tucker type for
nondifferentiable convex multiobjective programming problems were established by Kan-
niappan [11]. Later, Craven [5] proved these conditions for nondifferentiable multiobjective
programming problems involving locally Lipschitz functions. Also, under some constraint
qualification, Lee [14] proved the Karush–Kuhn–Tucker necessary optimality conditions for
multiobjective programming problems involving Lipschitz functions.

Theorem 10 (Fritz John necessary optimality conditions). Let x ∈ D be a (weak) Pareto
optimal solution in (VP). Then there exist λ ∈ Rk, µ ∈ Rm, not all zero, such that the
following conditions are satisfied
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0 ∈
k∑

i=1

λi∂ fi (x̄) +
m∑

j=1

µ j∂g j (x̄), (3)

µ j g j (x̄) = 0, j ∈ J, (4)

λ � 0, µ � 0, (λ, µ) �= (0, 0). (5)

Now, we define the Lagrange function or the Lagrangian for the problem (VP) as follows

L(x, λ, ξ) := λ f (x) + ξg(x),

where λ ∈ Rk+, ξ ∈ Rm+ .
The Karush–Kuhn–Tucker necessary optimality conditions for x̄ to be (weak) Pareto

optimal are obtained from the above Fritz John necessary optimality conditions under some
constraint qualification.

Now, we give a generalized Slater type constraint qualification and under this regularity
constraints qualification we establish the Karush–Kuhn–Tucker necessary optimality condi-
tions for the considered nonsmooth multiobjective programming problem (VP).

Definition 11 The program (VP) is said to satisfy the generalized Slater type constraint
qualification at x ∈ D if there exists x̃ ∈ D such that gJ (x̄)(̃x) < 0, and gJ (x̄) is V -r -invex
with respect to η at x on D.

Theorem 12 (Karush–Kuhn–Tucker necessary optimality conditions). Let x̄ ∈ D be a
(weak) Pareto optimal solution for (VP). Assume that the generalized Slater type constraint
qualification is satisfied at x̄ . Then, there exist λ ∈ Rk and µ ∈ Rm such that, the following
Karush–Kuhn–Tucker conditions are satisfied:

0 ∈
k∑

i=1

λi∂ fi (x̄) +
m∑

j=1

µ j∂g j (x̄), (6)

µ j g j (x̄) = 0, j ∈ J, (7)

λ ≥ 0, µ � 0. (8)

Proof Since x̄ ∈ D is a (weak) Pareto optimal in (VP), then the necessary optimality condi-
tions of Fritz John type (3)–(5) for a nondifferentiable multiobjective programming problem
are fulfilled. Let us suppose that λ = 0. Then by (4) we have that µ j = 0 for all j /∈ J (x̄),
and there exists at least one j ∈ J (x̄) such that µ j > 0. Then from (6) and subdifferential
calculus (see [4]), it follows that

0 ∈ ∂

⎛

⎝
m∑

j=1

µ j g j (x̄)

⎞

⎠ = ∂

⎛

⎝
∑

j∈J (x̄)

µ j g j (x̄)

⎞

⎠ ⊂
∑

j∈J (x̄)

µ j∂g j (x̄).

Thus, there exist ζ j ∈ ∂g j (x̄) , j ∈ J (x̄), such that

∑

j∈J (x̄)

µ jζ j = 0. (9)

By assumption, gJ (x̄) is assumed to be V -r -invex with respect to the same functionη at x̄ on D.
Therefore, by Lemma 7, we have that any function (µ j g j ) j∈J (x̄) isV - r

µ j
-invex with respect

123



324 J Glob Optim (2009) 45:319–334

to the same function η at x̄ on D. Then, using Definition 4 together with (7), we get that the
following inequality

∑

j∈J (x̄)

µ j

r
(erg j (x) − 1) =

∑

j∈J (x̄)

µ j

r

(
e

r
µ j

(µ j g j (x)−µ j g j (x̄)) − 1

)

�
∑

j∈J (x̄)

µ jα j (x, x)〈ζ j ; η(x, x)〉 = 0. (10)

holds for all x ∈ D.
On other hand, it follows from the generalized Slater type constraint qualification that

there exists x̃ ∈ D such that g j (̃x) < 0, j ∈ J (x̄). Since µ j > 0 at least for one j ∈ J (x̄),
then we obtain the following inequality

∑

j∈J (x̄)

µ j

r

(
erg j (̃x) − 1

)
< 0,

which contradicts (10). ��
It turns out that to prove that the Lagrange multiplier λ is not equal to 0 it can be assumed

also the following Slater type constraint qualification.

Remark 13 We assume gJ (x̄) is V -r -invex with respect to the function η at x , but there exist
at least one g j , j ∈ J (x̄) which is strictly V -r -invex with respect to the same function η at
x on the set of all feasible solutions D. Then the Lagrange multiplier λ is not equal to 0.

Now, under the assumption of V -r -invexity, we establish sufficient optimality conditions
for nonsmooth multiobjective programming problems involving locally Lipschitz functions.

Theorem 14 (Sufficient optimality conditions). Let x ∈ D. Assume that Karush–Kuhn–
Tucker conditions (6)–( 8) are satisfied at x. If f I (x̄) and gJ (x̄) are (V -r-invex) strictly V-r-in-
vex with respect to the same function η at x̄ on D, then x is a (weak) Pareto optimal solution
in (VP).

Proof Let x be feasible in (VP) and the Karush–Kuhn–Tucker conditions (6)–(8) be satisfied
at x . We proceed by contradiction. Suppose that x is not a weak Pareto optimal in (VP). Then,
by Definition 9, there exists x̃ ∈ D such that

f (̃x) < f (x). (11)

Since f I (x̄) is V -r -invex with respect to the function η at x̄ on D, then by Definition 4, for
i ∈ I (x̄), the following inequality

1

r
er fi (x) �

1

r
er fi (x)[1 + rαi (x, x)〈ξi ; η(x, x)〉]

holds for each ξi ∈ ∂ fi (x) and for all x ∈ D. Hence, it is also satisfied for x = x̃ . Then,
by (11),

αi (x̃, x)〈ξi ; η(̃x, x)〉 < 0.

By definition, we have αi (x, x) > 0, i ∈ I . By the Karush–Kuhn–Tucker necessary
optimality condition (8), it follows that there exists λ ∈ Rk+, λ ≥ 0. Hence,

k∑

i=1

λi 〈ξi ; η(̃x, x)〉 < 0. (12)
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By assumption, gJ (x̄) is V -r -invex with respect to the function η at x̄ on D. Then, by Defini-
tion 4, there exist η : D × D → Rn and β j : D × D → R+{0} such that, for j ∈ J (x̄), the
following inequality

1

r
erg j (x) �

1

r
erg j (x)[1 + rβ j (x, x)〈ζ j ; η(x, x)〉]

holds for each ζ j ∈ ∂g j (x) and for all x ∈ D. Hence, it is also satisfied for x = x̃ . Then, by
Lemma 7, it follows that any function (µ j g j ) j∈J (x̄) is V - r

µ j
-invex with respect to the same

function η at x̄ on D. Thus,

µ j

r
e

r
µ j

µ j g j (̃x) �
µ j

r
e

r
µ j

µ j g j (x)

[

1 + r

µ j
µ jβ j (̃x, x)

〈
ζ j ; η(̃x, x)

〉
]

. (13)

From the feasibility of x̃ in (VP) together with the Karush–Kuhn–Tucker optimality con-
dition (7), we have

µ j g j (̃x) � µ j g j (x). (14)

Thus, by (13) and (14), we get, for j ∈ J (x̄) ,

µ jβ j (̃x, x)
〈
ξ j ; η(̃x, x)

〉
� 0.

Since by definition β j (̃x, x) > 0, j ∈ J, and µ j = 0, j /∈ J (x̄), then the inequality

µ j
〈
ζ j ; η(̃x, x)

〉
� 0

holds for all j ∈ J . Thus,

m∑

j=1

µ j
〈
ζ j ; η(̃x, x)

〉
� 0. (15)

Adding both sides of (12) and (15), we obtain that the inequality

k∑

i=1

λi 〈ξi ; η(̃x, x)〉 +
m∑

j=1

µ j 〈ζ j ; η(̃x, x)〉 < 0

holds for each ξi ∈ ∂ fi (x) and ζ j ∈ ∂g j (x), which is a contradiction to the Karush–Kuhn–
Tucker optimality condition (6). This means that x is a weak Pareto optimal solution in (VP).
Proof for efficiency is similar. ��

Remark 15 It turns out that if we assume in Theorem 14 that at least one of the functions
f I (x̄) is strictly V -r -invex with respect to the function η at x̄ on D, then x is Pareto optimal
solution in (VP).

Now, we prove sufficient optimality conditions under V -r -invexity imposed on the
Lagrangian.

Theorem 16 (Sufficient optimality conditions) Let x ∈ D. Assume that Karush–Kuhn–
Tucker conditions (6)–(8) are satisfied at x. If the Lagrange function is (V-r-invex) strictly
V-r -invex with respect to η at x on D, then x is a (weak) Pareto optimal solution in (VP).
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Proof Let x be a feasible solution in (VP). By assumption, there exist λ ∈ Rk, λ ≥ 0, µ ∈
Rm, µ � 0, such that the Karush–Kuhn–Tucker optimality conditions (6)–(8) are fulfilled
at x . We proceed by contradiction. Suppose that x is not a weak Pareto optimal in (VP).
Then, by Definition 9, there exists x̃ ∈ D such that the inequality (11 ) is satisfied. Since the
Lagrange function is V -r -invex with respect to η on at x on D, then, by Definition 4 , there
exist η : D × D → Rn and γ : D × D → R+\{0} such that, the inequality

1

r
e

r
(∑k

i=1 λi fi +∑m
j=1 µ j g j

)
(̃x)

�
1

r
e

r
(∑k

i=1 λi fi +∑m
j=1 µ j g j

)
(x)

⎡

⎣1 + rγ (̃x, x)

〈
k∑

i=1

λiξi +
m∑

j=1

µ jζ j ; η(̃x, x)

〉⎤

⎦

holds for each ξi ∈ ∂ fi (x) and ζ j ∈ ∂g j (x). Then, using (11) and (14) together with
γ (̃x, x) > 0, we have that the inequality

〈
k∑

i=1

λiξi +
m∑

j=1

µ jζ j ; η(̃x, x)

〉

< 0

holds for each ξi ∈ ∂ fi (x), i = 1, . . . , k, and ζ j ∈ ∂g j (x), j = 1, . . . , m, which is a con-
tradiction to the Karush–Kuhn–Tucker optimality condition (6). This means that x is a weak
Pareto optimal solution in (VP). The proof of efficiency is similar. ��

To illustrate the considered in the paper approach to optimality, we give an example of
a nonsmooth multiobjective programming problem involving (locally Lipschitz) V -r -invex
functions with respect to the same function η.

Example 17 We consider the following nonsmooth multiobjective programming problem
(VP)

f (x) = ( f1(x), f2(x)) → min

g(x) � 0,

where

f1(x) = ln(x2 + |x | + 1), f2(x) =
{

ln 1
2 (e−x + 1) if x < 0,

1
2 ln 1

2 (ex + 1) if x � 0,

g(x) =
{

x
x−1 if x < 0,
1
2 ln(x2 − x + 1) if x � 0.

It is not difficult to see that f1, f2, g are locally Lipschitz functions and, moreover, the set
of all feasible solutions D = {x ∈ R : g(x) � 0} = [0, 1]. Note also that a feasible
solution x = 0 is Pareto optimal in the considered nonsmooth vector optimization prob-
lem. By Definition 3 (also by Theorem 2.5.1 [4]), ∂ f1(x) = [−1, 1], ∂ f2(x) = [− 1

2 , 1
4 ] and

∂g(x) = [−1,− 1
2 ]. Further, we set
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α1(x, x) = 1, α2(x, x) =
√

1
2 ex̄ + 1

2
√

1
2 ex + 1

2 +
√

1
2 ex̄ + 1

2

β(x, x) = 2
√

x̄2 − x̄ + 1√
x2 − x + 1 + √

x̄2 − x̄ + 1
.

η(x, x) = |x | − |x | . (16)

Then, it follows by Definition 4 that f and g are V -1-invex at x on D with respect to the
same function η and with respect to α and β, respectively, defined above. What is more, f1

is strictly V -1-invex at x on D with respect to the same function η and with respect to α1

defined above. Moreover, the generalized Slater type constraint qualification is satisfied at
x̄ . Also, it can be established that the Karush–Kuhn–Tucker necessary optimality conditions
(6)–(8) are satisfied at x . Since all hypotheses of Theorem 14 are fulfilled, then x is a Pareto
optimal in the considered multiobjective programming problem.

Further, we note that the optimality conditions introduced by Jeyakumar and Mond [10]
for differentiable vector optimization problems are not applicable for the considered non-
differentiable multiobjective programming problem. Also we cannot use a method proposed
in [7], since the functions involved in the considered vector optimization problem are not
V -invex with respect to the same function η defined in (16).

4 Mond Weir duality

Following the approaches of Mond and Weir [18], we formulate the following dual problem
for (VP):

f (y) → max

such that 0 ∈ ∂

⎛

⎝
k∑

i=1

λi fi +
m∑

j=1

µ j g j

⎞

⎠ (y) (MWD)

m∑

j=1

µ j g j (y) � 0

λ ∈ Rk, λ ≥ 0, µ ∈ Rm, µ � 0

Let W denote the set of all feasible solutions in dual problem (MWD). Further, we denote
by Y the set Y = {y ∈ X : (y, λ, µ) ∈ W }.

Now, we give some useful lemma whose a simple proof is omitted in the paper.

Lemma 18 Let (y, λ, µ) be a certain feasible solution for (MWD). Assume that gJ (y) is
V -r-invex with respect to η at y on D ∪ Y . Then, the following inequality

m∑

j=1

µ j
〈
ζ j ; η(x, y)

〉
� 0 (17)

holds for each ζ j ∈ ∂g j (y) and for all x ∈ D.

Theorem 19 (Weak duality). Let x and (y, λ, µ) be feasible solutions for (VP) and (MWD),
respectively. Moreover, we assume that f I (y) and gJ (y) are V -r-invex with respect to the same
function η at y onD ∪ Y . Then f (x) ≮ f (y).
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Proof Let x and (y, λ, µ) be feasible solutions in (VP) and (MWD), respectively. Then,
there exist ξi ∈ ∂ fi (y), i ∈ I , and ζ j ∈ ∂g j (y), j ∈ J , such that

k∑

i=1

λiξi +
m∑

j=1

µ jζ j = 0. (18)

We proceed by contradiction. Suppose that

f (x) < f (y). (19)

Since f I (y) is V -r -invex with respect to η at y on D ∪ Y and λi > 0 for i ∈ I (y), then, by
Lemma 7, it follows that any function (λi fi )i∈I (y) is V - r

λi
-invex with respect to η at y on

D ∪ Y . Thus, by Definition 4, the following inequality

λi

r

(
e

r
λi

(λi fi (x)−λi fi (y)) − 1
)

� λiαi (x, y) 〈ξi ; η(x, y)〉 .

holds for all ξi ∈ ∂ fi (y). Hence, by (19),

λiαi (x, y) 〈ξi ; η(x, y)〉 ≤ 0.

Since by definition αi (x, y) > 0, then, taking into account also i /∈ I (y), we get

k∑

i=1

λi 〈ξi ; η(x, y)〉 < 0. (20)

By assumption, gJ (y) isV -r -invex with respect to the same function η at y on D ∪ Y . Then,
by Lemma 18, we have

m∑

j=1

µ j 〈ζ j ; η(x, y)〉 � 0. (21)

Adding both sides of (20) and (21), we obtain that the inequality

k∑

i=1

λi 〈ξi ; η(x, y)〉 +
m∑

j=1

µ j 〈ζ j ; η(x, y)〉 < 0

holds for each ξi ∈ ∂ fi (y), i = 1, . . . , k, and ζ j ∈ ∂g j (y), j = 1, . . . , m, which contradicts
(18). ��
Remark 20 If we assume that the Lagrangian is V -r -invex with respect to η at y on D ∪ Y ,
then weak duality also holds between problems (VP) and (MWD).

Theorem 21 (Strong duality). Let x be a (weak) Pareto optimal solution in (VP). Then there
exist λ ∈ Rk, λ ≥ 0, µ ∈ Rm+, µ � 0, such that (x, λ, µ) is feasible in (MWD). If, also weak
duality holds between problems (VP) and (MWD), then (x, λ, µ) is a (weak) maximum in
(MWD) and the optimal values in both problems are the same.

Proof Let x be a (weak) Pareto optimal in (VP). Then there exist λ ∈ Rk, λ ≥ 0, µ ∈
Rm, µ � 0, such that the Karush–Kuhn–Tucker optimality conditions (6)–(8) are fulfilled
at x . Thus, by the Karush–Kuhn–Tucker optimality conditions (6)–(8), we conclude that
(x, λ, µ) is feasible in dual problem (MWD). Suppose that (x, λ, µ) is not a weak maximum
in (MWD). Then, there exists (ỹ, λ̃, µ̃) ∈ W such that

f (x) < f (ỹ).
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But the above inequality above is a contradiction to weak duality. Thus, (x, λ, µ) is a weak
maximum in (MWD), and hence the optimal values in both problem are the same. ��
Theorem 22 (Converse duality). Let (y, λ, µ) be a (weak) efficient solution for (MWD) such
that y ∈ D. Moreover, we assume that f I (y) and gJ (y) are (V -r-invex) strictly V -r-invex
with respect to the same function η at y on D ∪ Y . Then y is a (weak) efficient solution in
(VP).

Proof Since (y, λ, µ) is a weak efficient point in (MWD), then it is feasible in (MWD).
Hence, by the second constraint of (MWD), we have

m∑

j=1

µ j g j (y) � 0.

By assumption, y ∈ D. Then, by µ � 0,

m∑

j=1

µ j g j (y) � 0.

Combining two inequalities above, we get that

m∑

j=1

µ j g j (y) = 0.

We proceed by contradiction. Suppose that y is not a weak efficient point in (MWD). Then,
by Definition 9, there exists x̃ ∈ D such that

f (̃x) < f (y). (22)

Since f I (y) is V -r -invex with respect to η at y on D ∪ Y and λi > 0 for i ∈ I (y), then, by
Lemma 7, it follows that (λi fi )i∈I (y) is V - r

λi
-invex with respect to the same function η at y

on D ∪ Y . Thus, by Definition 4, the following inequality

λi

r

(
e

r
λi

(λi f (i x)−λi fi (y)) − 1

)
� λiαi (x, y)〈ξi ; η(x, y)〉.

holds for any ξi ∈ ∂ fi (y), i ∈ I (ȳ), and for all x ∈ D . Hence, it is also satisfied for x = x̃ .
Thus, by (22), for i ∈ I (y),

λiαi (x, y)〈ξi ; η(̃x, y)〉 < 0.

Since by definition αi (̃x, y) > 0, i ∈ I , and λi = 0, i /∈ I (y), then

k∑

i=1

λi 〈ξi ; η(̃x, y)〉 < 0. (23)

By assumption, gJ (y) is V -r -invex with respect to the same function η at y on D ∪ Y . Then,
by Lemma 18, we have

m∑

j=1

µ j 〈ζ j ; η(̃x, y)〉 � 0. (24)
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Adding both sides of (23) and (24), we obtain that the inequality

k∑

i=1

λi 〈ξi ; η(̃x, y)〉 +
m∑

j=1

µ j 〈ζ j ; η(̃x, y)〉 < 0

holds for each ξi ∈ ∂ fi (y), i = 1, . . . , k, and ζ j ∈ ∂g j (y), j = 1, . . . , m, which contradicts
the feasibility of

(
y, λ, µ

)
in (MWD). ��

Remark 23 To prove that y is an efficient solution in (VP), it should be assumed in Theorem
22 that at least one of the functions f I (y) is strictly V -r -invex with respect to η at y on D ∪Y .

The Mond–Weir converse duality theorem can be proved also when the Lagrange function
is V -r -invex with respect to η at y on D ∪ Y .

Theorem 24 (Converse duality). Let (y, λ, µ) be a (weak) efficient solution in (MWD) such
that y ∈ D. Moreover, we assume that the Lagrange function is (V -r-invex) strictly V -r-invex
with respect to η at y on D ∪ Y . Then y is a (weak) efficient solution in (VP).

A restricted version of converse duality for (VP) and (MWD) is the following.

Theorem 25 (Restricted converse duality). Let (y, λ, µ) be feasible for (MWD). Further,
assume that there exists x ∈ D such that f (x) = f (y). If f I (x) and gJ (x) are V -r-invex with
respect to the same function η at y on D ∪ Y, then x is weak efficient in (VP).

Proof Since all hypotheses of Theorem 19 are fulfilled, then weak duality holds between
problems (VP) and (MWD). We proceed by contradiction. Suppose that y is not a weak
efficient point in (MWD). Then, by Definition 9, there exists x̃ ∈ D such that

f (̃x) < f (x). (25)

By assumption, f (x) = f (y). Therefore,

f (̃x) < f (y).

But the above inequality contradicts weak duality. ��

Theorem 26 (Strict converse duality). Let x and (y, λ, µ) be feasible in (VP) and (MWD),
respectively, such that

k∑

i=1

λi fi (x) <

k∑

i=1

λi fi (y) +
m∑

j=1

µ j g j (y). (26)

Moreover, we assume that the Lagrangian is V -r-invex with respect to η at y on D ∪Y . Then
x = y, and also y is weak efficient in (VP).

Proof We proceed by contradiction. Suppose that x �= y. Since x is feasible in (VP) and
µ � 0, then

∑m
j=1 µ j g j (x) � 0. Hence, by (26),

⎛

⎝
k∑

i=1

λi fi +
m∑

j=1

µ j g j

⎞

⎠ (x) <

⎛

⎝
k∑

i=1

λi fi +
m∑

j=1

µ j g j

⎞

⎠ (y). (27)
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By assumption, the Lagrangian is V -r -invex with respect to η at y on D ∪ Y . Therefore, by
Definition 4, there exist η : (D ∪Y )× (D ∪Y ) → Rn and γ : (D ∪Y )× (D ∪Y ) → R+\{0}
such that, the inequality

1

r
e

r
(∑k

i=1 λi fi +∑m
j=1 µ j g j

)
(x)

�
1

r
e

r
(∑k

i=1 λi fi +∑m
j=1 µ j g j

)
(y)

⎡

⎣1 + rγ (x, y)

〈
k∑

i=1

λiξi +
m∑

j=1

µ jζ j ; η(x, y)

〉⎤

⎦

holds for each ξi ∈ ∂ fi (y) and ζ j ∈ ∂g j (y). Then by (27) together with γ (x, y) > 0, we get
that the inequality

〈
k∑

i=1

λiξi +
m∑

j=1

µ jζ j ; η(x, y)

〉

< 0

holds for each ξi ∈ ∂ fi (y) and ζ j ∈ ∂g j (y), which contradicts the first constraints of (MWD).
This means that y is a weak Pareto optimal solution in (VP) and completes the proof. ��

5 Wolfe duality

Now, we prove duality results of Wolfe type between the primal vector optimization problem
(VP) and its Wolfe dual problem (WD) [25]:

ϕ(y, µ) = f (y) + µg(y)e → max

such that 0 ∈ ∂

⎛

⎝
k∑

i=1

λi fi +
m∑

j=1

µ j g j

⎞

⎠ (y) (WD)

λ ∈ Rk, λ ≥ 0, λe = 1, µ ∈ Rm, µ � 0

where e = (1, . . . , 1) ∈ Rk .
Let W̃ denote the set of all feasible solutions in dual problem (WD). Further, we denote

by Ỹ the following set Ỹ = {y ∈ X : (y, λ, µ) ∈ W̃ }.
Theorem 27 (Weak duality). Let x and (y, λ, µ) be any feasible solutions in (VP) and (WD),
respectively. If the Lagrangian is V -r-invex at y on D ∪ Ỹ , then weak duality holds between
(VP) and (WD), that is, f (x) ≮ ϕ(y, µ).

Proof Let x and (y, λ, µ) be feasible for (VP) and (WD), respectively. We proceed by con-
tradiction. Suppose that f (x) < ϕ(y, µ), that is, for each i ∈ I ,

fi (x) < fi (y) + µg(y) (28)

Using the feasibility of x in (VP) together with µ � 0, we obtain

µg(x) � 0. (29)

Since λ ∈ Rk, λ ≥ 0, then, using (28) together with (29), we obtain

λi fi (x) + λiµg(x) � λi fi (y) + λiµg(y),
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but for the last one i ∈ I ,

λi fi (x) + λiµg(x) < λi fi (y) + λiµg(y).

Adding both sides of the above inequalities, we get

k∑

i=1

λi fi (x) +
m∑

j=1

µ j g j (x)

k∑

i=1

λi <

k∑

i=1

λi fi (y) +
m∑

j=1

µ j g j (y)

k∑

i=1

λi . (30)

From the constraints of (WD), λe = 1. Thus, (30) yields

k∑

i=1

λi fi (x) +
m∑

j=1

µ j g j (x) <

k∑

i=1

λi fi (y) +
m∑

j=1

µ j g j (y). (31)

By assumption, the Lagrange function is V -r -invex with respect to η on at y on D∪ Ỹ . There-
fore, by Definition 4, there exist η : (D ∪ Ỹ )× (D ∪ Ỹ ) → Rn and γ : (D ∪ Ỹ )× (D ∪ Ỹ ) →
R+\{0} such that, the inequality

1

r
e

r
(∑k

i=1 λi fi +∑m
j=1 µ j g j

)
(x) �

1

r
e

r
(∑k

i=1 λi fi +∑m
j=1 µ j g j

)
(y)

×
⎡

⎣1 + rγ (x, y)

〈
k∑

i=1

λiξi +
m∑

j=1

µ jζ j ; η(x, y)

〉⎤

⎦

holds for each ξi ∈ ∂ fi (y) and ζ j ∈ ∂g j (y). Then, using (31) together with γ (x, y) > 0, we
obtain that the following inequality

〈
k∑

i=1

λiξi +
m∑

j=1

µ jζ j ; η(x, y)

〉

< 0 (32)

holds for each ξi ∈ ∂ fi (y), i = 1, . . . , k, and ζ j ∈ ∂g j (y), j = 1, . . . , m. But (32) contra-
dicts the feasibility of (y, λ, µ) in (WD). ��
Theorem 28 (Strong duality). Let x be (weak) efficient in (VP) and the generalized Slater
type constraint qualification be satisfied at x. Then there exist λ ∈ Rk, λ ≥ 0, µ ∈ Rm, µ �
0, such that (x, λ, µ) is feasible for (WD) and the objective functions of (VP) and (WD) are
equal at these points. If also weak duality between (VP) and (WD) holds, then (x, λ, µ) is a
(weak) maximum in (WD).

Proof By Karush–Kuhn–Tucker conditions, there exist λ ≥ 0, µ ∈ Rm, µ � 0 such that 0 ∈
∂(λ f + µg)(x), µ j g j (x) = 0 for j ∈ J . This, in turn, implies that (x, λ, µ) is feasible for
(WD). We proceed by contradiction. Suppose, that (x, λ, µ) is not a weak maximum in (WD).
Then there exists (ỹ, λ̃, µ̃) feasible in (WD) such that

f (x) + µg(x)e < f (y) + µg(y)e, (33)

From µ j g j (x) = 0 for j ∈ J , we obtain the inequality

f (x) < f (y) + µg(y)e,

which is a contradiction to the weak duality theorem. Hence, we conclude that (x, λ, µ) is a
weak maximum in (WD). ��
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Theorem 29 (Restricted converse duality). Let x and (y, λ, µ) be feasible solutions of (VP)
and (WD), respectively, such that f (x) = ϕ(y, µ). If the Lagrangian is a V -r-invex function
with respect to η at y on D ∪ Ỹ , then x and (y, λ, µ) are optimal solutions in (VP) and (WD),
respectively.

Proof We proceed by contradiction. If x is not a weak efficient solution in (VP), then there
exists x̃ ∈ D such that f (̃x) < f (x). Since (y, λ, µ) is feasible for (WD) then, using
f (x) = ϕ(y, µ), we get

f (̃x) < f (y) + µg(y)e.

Hence, using x̃ ∈ D together µ � 0, we get µg(x) � 0. Thus, for any i = 1, . . . , k,

fi (̃x) + µg(̃x) < fi (y) + µg(y).

Since λ ≥ 0, then

fi (̃x) + µg(̃x)λi � fi (y) + µg(y)λi ,

but for the last one i ∈ I ,

λi fi (̃x) + µg(̃x)λi < λi fi (y) + µg(y)λi .

Adding both sides of the above inequalities and using λe = 1, we get

λ f (̃x) + µg(x) < λ f (y) + µg(y). (34)

Since the Lagrangian is V -r -invex at y on D ∪ Ỹ , then by (34), we obtain

0 /∈ ∂

⎛

⎝
k∑

i=1

λi fi +
m∑

j=1

µ j g j

⎞

⎠ (y),

which contradicts the feasibility of (y, λ, µ) in (WD). ��
Now, we establish a strict converse duality theorem for problems (VP) and (WD), which

is an extension of a Mangasarian type strict converse duality theorem [15] for the nondiffer-
entiable vector case.

Theorem 30 (Strict converse duality). Let x and (y, λ, µ) be efficient and maximum in (VP)
and (WD), respectively, such that f (x) � f (y) + µg(y)e. Assume that the Lagrangian is
strictly V -r-invex with respect to η at y on D ∪ Ỹ . Then x = y; that is, y is an efficient
solution in (VP) and, moreover, f (x) = ϕ(y, µ).

Proof Let us suppose that x �= y. In the similar way as the inequality (34) in the proof of
Theorem 29, we obtain, using the assumption of theorem, the following relation

λ f (̃x) + µg(x) � λ f (y) + µg(y). (35)

Since the Lagrangian is strictly V -r -invex with respect to η at y on D ∪ Ỹ , then, using the
constraint of (WD), we get the following inequality

λ f (x) + µg(x) > λ f (y) + µg(y).

contradicting (35). ��
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